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Critical behavior of period doublings in coupled inverted pendulums

Sang-Yoon Kim1,2,* and Bambi Hu2,3

1Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
2Centre for Nonlinear Studies and Department of Physics, Hong Kong Baptist University, Hong Kong, China

3Department of Physics, University of Houston, Houston, Texas 77204
~Received 13 July 1998!

We study the critical behaviors of period doublings inN (N52,3,4,. . . ) coupled inverted pendulums by
varying the driving amplitudeA and the coupling strengthc. It is found that the critical behaviors depend on
the range of coupling interaction. In the extreme long-range case of global coupling, in which each inverted
pendulum is coupled to all the other ones with equal strength, the zero-coupling critical point and an infinity
of critical line segments constitute the same critical set in theA-c plane, independently ofN. However, for any
other nonglobal-coupling cases of shorter-range couplings, the structure of the critical set becomes different
from that for the global-coupling case, because of a significant change in the stability diagram of periodic
orbits born via period doublings. The critical scaling behaviors on the critical set are also found to be the same
as those for the abstract system of the coupled one-dimensional maps.@S1063-651X~98!05912-1#

PACS number~s!: 05.45.1b, 03.20.1i, 05.70.Jk
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I. INTRODUCTION

The nonlinear dynamics of coupled nonlinear oscillat
has attracted considerable attention in recent years. S
coupled oscillators are used to model many physical, che
cal, and biological systems such as coupledp-n junctions
@1#, Josephson-junction arrays@2#, charge-density waves@3#,
chemical-reaction systems@4#, and biological-oscillation sys
tems @5#. They exhibit diverse bifurcations, multistability
chaos, pattern formation, and so on.

The coupled nonlinear oscillators studied here are coup
inverted pendulums, consisting ofN identical inverted pen-
dulums coupled through some interaction mechanism.
first consider a constituent element of the coupled dynam
system, i.e., a single parametrically forced pendulum wit
vertically oscillating suspension point. It can be described
a normalized equation of motion@6#,

ẍ5 f ~x,ẋ,t !522pbV ẋ22p~V22A cos 2pt !sin 2px,
~1!

wherex is a normalized angle with rangexP@0,1), b is a
normalized damping parameter,V is the normalized natura
frequency of the unforced pendulum, andA is the normalized
driving amplitude of the vertical oscillation of the suspensi
point, respectively. This parametrically forced pendulum h
an ‘‘inverted’’ stationary state, corresponding to the ver
cally up configuration withx5 1

2 . It is well known that as the
parameterA is increased, the inverted pendulum undergoe
cascade of ‘‘resurrections,’’ i.e., it becomes stabilized a
its instability, destabilizes again, and so forthad infinitum
@7–10#. Recently, we have studied bifurcations and tran
tions to chaos associated with such resurrections of the
verted pendulum@11#. For each case of the resurrections, t
stabilized inverted state exhibits an infinite sequence
period-doubling bifurcations accumulating at a perio

*Electronic address: sykim@cc.kangwon.ac.kr
PRE 581063-651X/98/58~6!/7231~12!/$15.00
s
ch
i-

d

e
al
a
y

s
-

a
r

i-
n-

f
-

doubling transition pointA* , beyond which chaos sets in
Consequently, an infinite series of period-doubling tran
tions to chaos occur successively with increasingA. This is
in contrast to the one-dimensional~1D! map @12#, where
only single period-doubling transition to chaos takes pla
However, the critical scaling behaviors at eachi th period-
doubling transition pointAi* ( i 51,2,3,. . . ) are thesame as
those for the 1D map.

In this paper we study the critical behaviors of peri
doublings in the system ofN (N52,3,4,. . . ) symmetrically
coupled inverted pendulums by varying the driving amp
tude A and the strengthc of coupling between the inverte
pendulums, and also compare them with those for the
stract system of the coupled 1D maps@13,14#. The ‘‘cou-
pling effect’’ of the strength and range of coupling on th
critical behaviors are particularly investigated. Both t
structure of the critical set and the critical scaling behavi
for the coupled inverted pendulums are found to be the sa
as those for the coupled 1D maps found by one of us~Kim!
and Kook@14#.

This paper is organized as follows. We first introduceN
symmetrically coupled inverted pendulums in Sec. II, a
discuss their dynamical symmetries and couplings. Bifur
tions associated with stability of periodic orbits an
Lyapunov exponents in the coupled inverted pendulums
also discussed in Sec. III. We then investigate the criti
behaviors of period doublings in the coupled inverted p
dulums in Sec. IV. As in the single inverted pendulum@11#,
coupled inverted pendulums undergo multiple perio
doubling transitions to chaos@e.g., see Figs. 2~a!, 6~a!, and
6~b! for the ‘‘stability trees’’ associated with the first, sec
ond, and third period-doubling transitions to chaos, resp
tively#. For each period-doubling transition to chaos, t
critical behaviors vary depending on whether or not the c
pling is global. In the extreme long-range case of glob
coupling, the zero-coupling critical point withc50 and an
infinity of critical line segments lying on the lineA5Ai*
constitute the same critical set in theA-c plane, irrespec-
tively of N. However, for any other nonglobal-coupling cas
7231 © 1998 The American Physical Society
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of shorter-range couplings, a significant change occurs in
stability diagram of 2n-periodic (n50,1,2,. . . ) orbits in the
A-c plane, and consequently the structure of the critical
becomes different from that for the global-coupling case
is also found that the critical scaling behaviors on the criti
set are the same as those for the abstract system o
coupled 1D maps@14#. Finally, a summary is given in
Sec. V.

II. SYMMETRIES AND COUPLINGS IN THE COUPLED
INVERTED PENDULUMS

In this section we introduceN symmetrically coupled in-
verted pendulums and then discuss their symmetries
couplings. ConsiderN symmetrically coupled inverted pen
dulums with a periodic boundary condition

ẍm5 f ~xm ,ẋm ,t !1g~xm ,xm11 , . . . ,xm21!,
~2!

m51,2,. . . ,N.

Here the periodic boundary condition imposesxm(t)
5xm1N(t) for all m, the functionf (x,ẋ,t) is given in Eq.~1!,
and g(x1 , . . . ,xN) is a coupling function, obeying the con
dition

g~x, . . . ,x!50 for allx. ~3!

The second-order differential equations~2! are reduced to
a set of first-order differential equations,

ẋm5ym , ~4a!

ẏm5 f ~xm ,ym ,t !1g~xm ,xm11 , . . . ,xm21!,
~4b!

m51,2,. . . ,N.

Consider an initial orbit pointz(0) @5„z1(0), . . . ,zN(0)…#,
wherezi5(xi ,yi) ( i 51, . . . ,N). Then its Poincare´ maps can
be computed by sampling the orbit pointsz(m) at the dis-
crete timet5m (m51,2,3,. . . ). We will call the transfor-
mation z(m)→z(m11) the Poincare´ map, and writez(m
11)5P„z(m)….

The 2N-dimensional Poincare´ mapP has a cyclic permu-
tation symmetry such that

s21Ps~z!5P~z! for all z, ~5!

where s is a cyclic permutation of z such that
s(z1 ,z2 , . . . ,zN)5(z2 , . . . ,zN ,z1) and s21 is its inverse.
The set of all fixed points ofs forms a 2D synchronization
plane, on which

x15•••5xN , y15•••5yN . ~6!

It follows from Eq. ~5! that the cyclic permutations com-
mutes with the Poincare´ map P, i.e., sP5Ps. Conse-
quently, the 2D synchronization plane becomes invariant
der P, i.e., if a pointz lies on the 2D synchronization plane
then its imageP(z) also lies on it. An orbit is called a~n!
~in-phase! synchronous orbit if it lies on the 2D invarian
synchronization plane, i.e., it satisfies
e

et
It
l

the

nd

n-

x1~ t !5•••5xN~ t ![x* ~ t !, y1~ t !5•••5yN~ t ![y* ~ t !.
~7!

Otherwise it is called an~out-of-phase! asynchronous orbit.
Here we study only the synchronous orbits. They can
easily found from the uncoupled inverted pendulum~1!, be-
cause the coupling functiong satisfies the condition~3!. Note
also that for these synchronous orbits, the Poincare´ map P
also has the inversion symmetry such that

SPS~z!5P~z! for all z, ~8!

whereS(z)52z. If a synchronous orbit$z(t)% of P is in-
variant underS, it is called a symmetric orbit. Otherwise, it i
called an asymmetric orbit and has its ‘‘conjugate’’ orb
S$z(t)%.

We now discuss the couplings between the inverted p
dulums. Consider an element, say themth element, in theN
coupled inverted pendulums. Then the (m6d)th elements
are called thedth neighbors of themth element. Here we
consider the case where the coupling extends to theKth „1
<K<(N/2)@(N21)/2#) for even~odd! N… neighbor~s! with
equal strength. Hereafter we will call the numberK the range
of the coupling interaction.

A general form of coupling for oddN (N>3) is given by

g~x1 , . . . ,xN!5
c

2K11 (
l 52K

K

@u~x11 l !2u~x1!#

5cF 1

2K11 (
l 52K

K

u~x11 l !2u~x1!G ,

K51, . . . ,
N21

2
, ~9!

wherec is a coupling parameter andu is a function of one
variable. Note that the coupling extends to theKth neighbors
with equal coupling strength, and the functiong satisfies the
condition ~3!. The extreme long-range interaction forK
5(N21)/2 is called a global coupling, for which the cou
pling functiong becomes

g~x1 , . . . ,xN!5
c

N (
m51

N

@u~xm!2u~x1!#

5cF 1

N (
m51

N

u~xm!2u~x1!G . ~10!

This is a kind of mean-field coupling, in which each invert
pendulum is coupled to all the other ones with equal c
pling strength. All the other couplings withK,(N21)/2
~e.g., nearest-neighbor coupling withK51) will be referred
to as nonglobal couplings. TheK51 case forN53 corre-
sponds to both the global coupling and the nearest-neigh
coupling.

We next consider the case of evenN (N>2). The form of
coupling of Eq.~9! holds for the cases of nonglobal cou
plings with K51, . . . , (N22)/2 (N>4). The global cou-
pling for K5 N/2 (N>2) also has the form of Eq.~10!, but
it cannot have the form of Eq.~9!, because there exists onl
one farthest neighbor forK5 N/2, unlike the case of oddN.



st
he

u

e

n-
ri

s-

e

s

the
-

-

PRE 58 7233CRITICAL BEHAVIOR OF PERIOD DOUBLINGS IN . . .
The K51 case forN52 also corresponds to the neare
neighbor coupling as well as to the global coupling, like t
N53 case.

III. STABILITY, BIFURCATIONS, AND LYAPUNOV
EXPONENTS OF SYNCHRONOUS ORBITS

In this section we first discuss the stability of synchrono
periodic orbits in the Poincare´ mapP of the coupled inverted
pendulums, using the Floquet theory@15#. Bifurcations asso-
ciated with the stability and Lyapunov exponents are th
discussed.

The stability analysis of an orbit in many-coupled i
verted pendulums can be conveniently carried out by Fou
transforming with respect to the discrete space$m% @16#.
Consider an orbit$xm(t); m51, . . . ,N% of the N coupled
inverted pendulums~2!. The discrete spatial Fourier tran
form of the orbit is

F@xm~ t !#[
1

N (
m51

N

e22p im j /Nxm~ t !5j j~ t !,

~11!
j 50,1, . . . ,N21.

The Fourier transformj j (t) satisfiesj j* (t)5jN2 j (t) (* de-
notes a complex conjugate!, and the wavelength of a mod
with index j is N/ j for j <N/2 and N/(N2 j ) for j .N/2.
Here j0 corresponds to the synchronous~Fourier! mode of
the orbit, while all the otherj j ’s with nonzero indicesj cor-
respond to the asynchronous~Fourier! modes.

To determine the stability of a synchronousq-periodic
orbit @x1(t)5•••5xN(t)[x* (t) for all t and x* (t)5x* (t
1q)#, we consider an infinitesimal perturbation$dxm(t)% to
the synchronous orbit, i.e.,xm(t)5x* (t)1dxm(t) for m
51, . . . ,N. Linearizing theN-coupled inverted pendulum
~2! at the synchronous orbit, we obtain

d ẍm5
] f ~x* ,ẋ* ,t !

]x*
dxm1

] f ~x* ,ẋ* ,t !

] ẋ*
d ẋm

1(
l 51

N

Gl~x* !dxl 1m21 , ~12!
m
l

-

s

n

er

where

Gl~x![
]g~x1 , . . . ,xN!

]xl
U

x15•••5xN5x

. ~13!

Hereafter the functionsGl ’s will be called ‘‘reduced’’ cou-
pling functions ofg(x1 , . . . ,xN).

Let dj j (t) be the Fourier transform ofdxm(t), i.e.,

dj j5F@dxm~ t !#5
1

N (
m51

N

e22p im j /Ndxm ,

j 50,1,. . . ,N21. ~14!

Heredj0 is the synchronous-mode perturbation, and all
other dj j ’s with nonzero indicesj are the asynchronous
mode perturbations. Then the Fourier transform of Eq.~12!
becomes

dj̈ j5
] f ~x* ,ẋ* ,t !

] ẋ*
dj̇ j

1F ] f ~x* ,ẋ* ,t !

]x*
1(

l 51

N

Gl~x* !e2p i ~ l 21! j /NGdj j ,

j 50,1,. . . ,N21. ~15!

Note that all the modesdj j ’s become decoupled for the syn
chronous orbit.

Equation~15! can also be put into the form

S dj̇ j

dḣ j
D 5Jj~ t !S dj j

dh j
D , j 50,1,. . . ,N21, ~16!

where
Jj~ t !5S 0 1

] f ~x* ,ẋ* ,t !

]x*
1(

l 51

N

Gl~x* !e2p i ~ l 21! j /N
] f ~x* ,ẋ* ,t !

] ẋ*
D . ~17!
Note that eachJj is a q-periodic matrix, i.e.,Jj (t)5Jj (t
1q). Using the Floquet theory@15#, we study the stability of
the synchronousq-periodic orbit against thej th-mode pertur-
bation as follows. LetF j (t)5„f j

(1)(t),f j
(2)(t)… be a funda-

mental solution matrix withF j (0)5I . Here f j
(1)(t) and

f j
(2)(t) are two independent solutions expressed in colu

vector forms, andI is the 232 unit matrix. Then a genera
solution of theq-periodic system has the following form:
n

S dj j~ t !

dh j~ t !
D 5F j~ t !S dj j~0!

dh j~0!
D ,

~18!

j 50,1,. . . ,N21,

Substitution of Eq.~18! into Eq.~16! leads to an initial-value
problem to determineF j (t):
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Ḟ j~ t !5Jj~ t !F j~ t !, F j~0!5I . ~19!

Each 232 matrix M j @[F j (q)#, which is obtained through
integration of Eq.~19! over the periodq, determines the
stability of the q-periodic synchronous orbit against th
j th-mode perturbation.

The characteristic equation of each matrixM j ( j
50,1,. . . ,N21) is

l j
22tr M j l j1detM j50, ~20!

where trM j and detM j denote the trace and determinant
M j , respectively. The eigenvalues,l j ,1 and l j ,2 of M j are
called the Floquet~stability! multipliers, which characterize
the stability of the synchronousq-periodic orbit against the
j th-mode perturbation. Since thej 50 case corresponds t
the synchronous mode, the first pair of Floquet multiplie
(l0,1,l0,2) is called the pair of synchronous Floquet mul
pliers. On the other hand, all the other pairs of Floquet m
tipliers are called the pairs of asynchronous Floquet multi
ers, because all the other cases ofj Þ0 correspond to
asynchronous modes.

As shown in Ref.@17#, detM j is given by

detM j5e*0
q tr Jjdt5e22pbVq. ~21!

Note that all the matricesM j ’s have the same constant Jac
bian determinant~less than unity!. Accordingly, each pair of
Floquet multipliers (l j ,1 ,l j ,2) ( j 50,1,. . . ,N21) lies either
on the circle of radiuse2pbVq or on the real axis in the
complex plane. The synchronous periodic orbit is sta
against thej th-mode perturbation when the pair of Floqu
multipliers (l j ,1 ,l j ,2) lies inside the unit circle in the com
plex plane. We first note that the Floquet multipliers nev
cross the unit circle in the complex plane, and hence H
bifurcations do not occur. Consequently, the synchronous
riodic orbit can lose its stability against thej th-mode pertur-
bation when a Floquet multiplierl j decreases~increases!
through21 (1) on the real axis.

A more convenient real quantityRj , called the residue
and defined by

Rj[
11detM j2tr M j

2~11detM j !
, j 50,1,. . . ,N21, ~22!

was introduced in Ref.@18# to characterize stability of peri
odic orbits in 2D dissipative maps with constant Jacob
determinants. Here the first oneR0 is associated with the
stability against the synchronous-mode perturbation,
hence it may be called the synchronous residue. On the o
hand, all the other onesRj ( j Þ0) are called the asynchro
nous residues, because they are associated with the sta
against the asynchronous-mode perturbations.

A synchronous periodic orbit is stable against t
j th-mode perturbation when 0,Rj,1 @i.e., the pair of Flo-
quet multipliers (l j ,1 ,l j ,2) lies inside the unit circle in the
complex plane#. When Rj decreases through 0~i.e., a Flo-
quet multiplier l j increases through 1), the synchrono
periodic orbit loses its stability via saddle-node or pitchfo
bifurcation ~PFB!. On the other hand, whenRj increases
s

l-
i-

e

r
f

e-

n

d
er

ility

through 1 ~i.e., a Floquet multiplierl j decreases through
21!, it becomes unstable via period-doubling bifurcati
~PDB!. We also note that a~n! synchronous~asynchronous!
bifurcation takes place forj 50 ( j Þ0). For each case of the
synchronous~asynchronous! PFB and PDB, two types of su
percritical and subcritical bifurcations occur. For the sup
critical case of the synchronous~asynchronous! PFB and
PDB, the synchronous periodic orbit loses its stability a
gives rise to the birth of a pair of new stable synchrono
~asynchronous! orbits with the same period and a new stab
synchronous~asynchronous! period-doubled orbit, respec
tively. However, for the subcritical case of the synchrono
~asynchronous! PFB and PDB, the synchronous periodic o
bit becomes unstable by absorbing a pair of unstable s
chronous~asynchronous! orbits with the same period and a
unstable synchronous~asynchronous! period-doubled orbit,
respectively.~For more details on bifurcations, refer to Re
@19#.!

It follows from condition ~3! that the reduced coupling
functions of Eq.~13! satisfy

(
l 51

N

Gl~x!50. ~23!

Hence the matrix~17! for j 50 becomes

J0~ t !5S 0 1

] f ~x* ,ẋ* ,t !

]x*

] f ~x* ,ẋ* ,t !

] ẋ*
D . ~24!

This is just the linearized Jacobian matrix for the case of
uncoupled inverted pendulum@11#. Hence the synchronou
residueR0 becomes the same as the residue of the uncou
inverted pendulum, i.e., it depends only on the amplitudeA.
While there is no coupling effect onR0, the coupling affects
all the other asynchronous residuesRj ( j Þ0).

In case of the global coupling of Eq.~10!, the reduced
coupling functions become

Gl~x!5H ~12N!G~x! for l 51

G~x! for lÞ1,
~25!

where G(x)5(c/N))u8(x). SubstitutingGl ’s into the sec-
ond term of the (2,1) entry of the matrixJj (t) of Eq. ~17!,
we have

(
l 51

N

Gl~x!e2p i ~ l 21! j /N5H 0 for j 50

2c u8~x! for j Þ0.
~26!

Hence all the asynchronous residuesRj ( j Þ0) become the
same, i.e.,R15•••5RN21. Consequently, there exist onl
two independent residuesR0 andR1, independently ofN.

We next consider the nonglobal coupling of form~9!, and
define

G~x![
c

2K11
u8~x!, ~27!

where 1<K<(N22)/2@(N23)/2# for even~odd! N larger
than 3. Then we have
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Gl~x!5H 22KG~x! for l 51

G~x! for 2< l<11K or for N112K< l<N

0 otherwise.

~28!
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Substituting the reduced coupling functions into the ma
Jj (t), the second term of the (2,1) entry ofJj (t) becomes

(
l 51

N

Gl~x!e2p i ~ l 21! j /N52SN~K, j !c u8~x!, ~29!

where

SN~K, j ![
4

2K11(
k51

K

sin2
p jk

N
512

sin~2K11!
p j

N

~2K11!sin
p j

N

.

~30!

Hence, unlike the global-coupling case, all the asynchron
residues vary depending on the coupling rangeK as well as
on the mode numberj . Since SN(K, j )5SN(K,N2 j ), the
residues satisfy

Rj5RN2 j , j 50,1,. . . ,N21. ~31!

Thus it is sufficient to consider only the case of 0< j
<(N/2) @(N21)/2# for even ~odd! N. Comparing the ex-
pression in Eq.~29! with that in Eq.~26! for j Þ0, one can
easily see that they are the same except for the fa
SN(K, j ). Consequently, making a change of the coupl
parameterc→ c/@SN(K, j )#, the residueRj for the nonglobal
coupling case of rangeK becomes the same as that for t
global-coupling case.

When the synchronous residueR0 of a synchronous peri
odic orbit increases through 1, the synchronous periodic
bit loses its stability via synchronous supercritical PDB, g
ing rise to the birth of a new synchronous period-doub
orbit. Here we are interested in such synchronous superc
cal PDB’s. Thus, for each mode with nonzero indexj we
consider a region in theA-c plane in which the synchronou
periodic orbit is stable against the perturbations of b
modes with indices 0 andj . This stable region is bounded b
four bifurcation curves determined by the equationsR050
and 1 andRj50 and 1, and it will be denoted byUN .

For the case of global coupling, those stable regions
incide, irrespectively ofN and j, because all the asynchro
nous residuesRj ’s ( j Þ0) are the same, independently ofN.
The stable region for this global-coupling case will be d
noted byUG . Note thatUG itself is just the stability region
of the synchronous periodic orbit, irrespectively ofN, be-
cause the synchronous periodic orbit is stable against
perturbations of all synchronous and asynchronous mode
the regionUG . Thus the stability diagram of synchronou
orbits of period 2n (n50,1,2,. . . ) in theA-c plane becomes
the same, independently ofN.

However, the stable regionUN varies depending on th
coupling rangeK and the mode numberj for the nonglobal-
x

s

or

r-
-
d
ti-

h
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-
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coupling cases, i.e.,UN5UN(K, j ). To find the stability re-
gion of a synchronous periodic orbit in theN coupled in-
verted pendulums with a givenK, one may start with the
stability regionUG for the global-coupling case. Rescalin
the coupling parameterc by a scaling factor 1/SN(K,j) for
each nonzeroj, the stable regionUG is transformed into a
stable regionUN(K, j ). Then the stability region of the syn
chronous periodic orbit is given by the intersection of
such stable regionsUN’s.

Finally, we briefly discuss Lyapunov exponents of a sy
chronous orbit in the Poincare´ map P, characterizing the
mean exponential rate of divergence of nearby orbits@20#.
As shown in Eq.~15!, all the synchronous and asychrono
modes of a perturbation to a synchronous orbit becomes
coupled. Hence each matrixM j @[F j (1)# with q51 deter-
mines the pair of Lyapunov exponents (s j ,1 ,s j ,2) ( j
50,1,. . . ,N21), characterizing the average exponent
rates of divergence of thej th mode perturbation, where
s j ,1>s j ,2 . Since eachM j has the same constant Jacobi
determinant~i.e., detM j5e22pbV), each pair of Lyapunov
exponents satisfiess j ,11s j ,2522pbV. Note also that the
first pair of synchronous Lyapunov exponents (s0,1,s0,2) is
just the pair of the Lyapunov exponents of the uncoup
inverted pendulum@11#, and the coupling affects only all th
other pairs of asynchronous Lyapunov exponents (s j ,1 ,s j ,2)
( j Þ0). Furthermore, all the pairs of the asynchrono
Lyapunov exponents for the global-coupling case beco
the same@i.e., (s1,1,s1,2)5•••5(sN21,1,sN21,2)], as in the
case of the asynchronous residues.

IV. CRITICAL SCALING BEHAVIORS
OF PERIOD DOUBLINGS

In this section, by varying the two parametersA andc, we
study the critical scaling behaviors of synchronous PDB’s
the N symmetrically coupled inverted pendulums forb
50.2 andV50.1. It is found that the critical behaviors de
pend on the coupling range. In the global-coupling case
which each inverted pendulum is coupled to all the oth
ones with equal coupling strength, the zero-coupling criti
point and an infinity of critical line segments constitute t
same critical set, independently ofN. However, for any other
nonglobal-coupling cases, the structure of the critical set
comes different from that for the global-coupling case, b
cause of a significant change in the stability diagram of
synchronous 2n-periodic orbits (n50,1,2,. . . ). Thecritical
scaling behaviors on the critical set are found to be the sa
as those for the abstract system of the coupled 1D maps@14#.
We thus consider separately two kinds of couplings,
global- and nonglobal-coupling cases.

A. Global coupling

We first study theN globally coupled inverted pendulum
with the coupling function of form~10!. As shown in Sec.
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III, a synchronous periodic orbit is stable when all its re
duesRj ( j 50,1,. . . ,N21) defined in Eq.~22! lie between 0
and 1~i.e., 0,Rj,1). HereR0 is the synchronous residu
determining the stability against the synchronous-mode
turbation, while all the other onesRj ( j Þ0) are the asyn-
chronous residues determining the stability against
asynchronous-mode perturbations. For the globally coup
case, all the asynchronous residues become the same,
pendently ofj, and hence only one independent asynch
nous residue~e.g.,R1) exists. Accordingly, the stability re
gion of a synchronous periodic orbit becomes bounded
four bifurcation lines determined by the equationsR050 and
1 andR150 and 1. Here theR050 and 1 (R150 and 1)
lines correspond to the synchronous~asynchronous! PFB and
PDB lines, respectively. In such a way, we obtain the sta
ity diagram of the synchronous 2n-periodic orbits (n
50,1,2,. . . ) in the A-c plane. Note also that the stabilit
diagram becomes the same, independently ofN, because all
the asynchronous residuesRj ( j Þ0) for each synchronou
orbit are also the same, irrespective ofN. Consequently, the
structure of the critical set and the critical behaviors for
global-coupling case become the same, independently oN.

As an example, we consider a linearly coupled case
which the coupling function~10! is

g~x1 , . . . ,xN!5c F 1

N (
m51

N

xm2x1G . ~32!

As in the uncoupled inverted pendulum@11#, the coupled
inverted pendulums exhibit multiple period-doubling tran
tions to chaos. Here we study the first three period-doub
transitions to chaos. For each period-doubling transition
chaos, the zero-coupling critical point and an infinity of cri
cal line segments constitute the critical set in theA-c plane.
Three kinds of critical behaviors associated with the sca
of the coupling parameterc are found on the critical set
while the critical scaling behavior of the amplitudeA is al-
ways the same as that of the uncoupled inverted pendu
Note that the structure of the critical set and the critical
haviors for the coupled inverted pendulums are found to
the same as those for the coupled 1D maps@14#.

Figure 1~a! shows the stability diagram of the synchr
nous orbits with low periodq51 and 2. The stable region o
a synchronous orbit is bounded by its PDB and PFB lin
The horizontal~nonhorizontal! solid and dashed boundar
lines correspond to synchronous~asynchronous! PDB and
PFB lines, respectively. Each bifurcation may be superc
cal or subcritical.

We first consider the bifurcations associated with stabi
of the synchronous inverted stationary point, correspond
to the vertically up configuration@i.e., x1(t)5•••5xN(t)
[x* (t)5 1

2 and y1(t)5•••5yN(t)[y* (t)50]. The in-
verted state is a symmetric one with respect to the invers
symmetryS. Its stability region is denoted by the IS in Fig
1~a!. For the unforced case ofA50, the inverted state is
obviously unstable. However, when crossing the horizon
dashed boundary line of the IS, its first resurrection occ
i.e., it becomes stabilized with birth of a pair of unstab
synchronous asymmetric orbits with period 1 via a subcr
cal PFB.~For more details on the resurrection of the invert
state, refer to Ref.@11#.! This stabilized inverted state dest
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bilizes again through asynchronous PDB and PFB when
nonhorizontal solid and dashed boundary curves are cros
respectively. However, it becomes unstable via a synch
nous supercritical PDB when crossing the horizontal so

FIG. 1. ~a! Stability diagram of the synchronous orbits of lo
period q51 and 2 inN linearly coupled inverted pendulums wit
global coupling. HereA1* ~50.575 154 . . . ! is just the first period-
doubling transition point of the uncoupled inverted pendulum. T
stable regions of the inverted stationary point, a symmetric
periodic orbit, and an asymmetric 2-periodic orbit are denoted
SP, SP2, and ASP2, respectively. The horizontal~nonhorizontal!
solid and dashed boundary lines correspond to synchronous~asyn-
chronous! PDB and PFB lines, respectively.~b! Phase portraits for
A50.5. The phase flow of a symmetric 2-periodic orbit born via
synchronous supercritical PDB is denoted by a solid curve, and
Poincare´ maps are represented by the solid circles.~c! Phase por-
traits forA50.57. The phase flows of a conjugate pair of asymm
ric 2-periodic orbits born via synchronous supercritical PFB
shown: one is denoted by a solid curve, while the other one
denoted by a dashed curve. Their Poincare´ maps are also repre
sented by solid and open circles, respectively.
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PRE 58 7237CRITICAL BEHAVIOR OF PERIOD DOUBLINGS IN . . .
boundary line, and gives rise to the birth of a new synch
nous orbit of period 2. This new synchronous 2-perio
orbit also is a symmetric one with respect to the invers
symmetryS, as shown in Fig. 1~b! and its stable region is
denoted by the SP2 in Fig. 1~a!. This synchronous symmetri
orbit of period 2 loses its stability through asynchrono
PFB’s when crossing the nonhorizontal dashed bound
curves. However, it becomes unstable via a synchronous
percritical PFB when the horizontal dashed boundary line
crossed, and consequently a pair of new stable synchro
orbits with the same period 2 appears. Note that the new
of synchronous orbits is a conjugate pair of asymmteric
bits with respect to the inversion symmetryS, which is
shown in Fig. 1~c!. That is, the inversion symmetry is broke
due to the symmetry-breaking PFB. The stable region of
asymmetirc orbits of period 2 is denoted by the ASP2 in F
1~a!. Each synchronous asymmetric 2-periodic orbit becom
unstable via a synchronous supercritical PDB when the h
zontal solid boundary line is crossed, and gives rise to
birth of a new synchronous asymmetric 4-periodic orb
Here we are interested in such synchronous supercri
PDB’s.

Figure 2 shows the stability diagram of synchrono
asymmetric orbits born by synchronous supercritical PDB
Each synchronous asymmetric orbit of leveln ~period 2n, n
51,2,3,. . . ) loses its stability at the horizontal solid boun

FIG. 2. Stability diagram of synchronous asymmet
2n-periodic (n51, 2, 3, and 4! orbits of leveln born via synchro-
nous supercritical PDB’s. PN denotes the stable region of an as
metric orbit of periodN (N52, 4, 8, and 16!. The solid and dashed
boundary lines represent the same as those in Fig. 1. The sta
diagram starting from the left~right! side of the ASP2 is shown in
~a! @~b!#. Note its treelike structure.
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ary line of its stable region via a synchronous supercriti
PDB, and gives rise to the birth of a synchronous asymme
period-doubled orbit of leveln11. Such an infinite sequenc
ends at a finite value ofA1* 50.575 154 . . . , which is just the
first period-doubling transition point of the uncoupled i
verted pendulum@11#. Consequently, a synchronous qua
periodic orbit, whose maximum synchronous Lyapunov e
ponent is zero~i.e., s0,150), exists on theA5A1* line.

We examine the treelike structure of the stability diagra
in Fig. 2, which consists of an infinite pile ofU-shaped and
rectangular-shaped regions. Note that the treelike structu
asymptotically the same as that in the coupled 1D maps@14#.
The U-shaped branching is repeated at one side of eachU-
shaped region, including thec50 line segment. The branch
ing side will be referred to as the zeroc side. However, the
other side of eachU-shaped region grows like a chimne
without any further branchings@as an example, see th
branch in Fig. 2~b! starting from the right side of theU-
shaped region of the ASP2#. As in the coupled 1D maps@14#,
this rule governs the asymptotic behavior of the treel
structure.

A sequence of connected stability regions with increas
period is called a ‘‘period-doubling route’’@14#. There are
two kinds of period-doubling routes. The sequence of
U-shaped regions with the zeroc sides converges to the zero
coupling pointc50 on theA5A1* line. It will be referred to
as theU route. On the other hand, a sequence of rectang
regions in each chimney converges to a critical line segm
on theA5A1* line. For example, the sequence of the recta
gular regions in Fig. 2~b! converges to a critical line segmen
joining the left end pointcl ~53.427 742 . . . ! and the right
end pointcr ~54.796 277 . . . ! on theA5A1* line. This kind
of route will be called aC route. Note that there are infinitel
many C routes, while theU route converging to the zero
coupling critical point (A1* ,0) is unique. Hence, an infinite
number of critical line segments, together with the ze
coupling critical point, constitute the critical set.

We now study the critical behaviors on the critical s
First, consider the case of theU route ending at the zero
coupling critical point. We follow the synchronous orbits
periodq52n up to leveln58 in theU route, and obtain a
self-similar sequence of parameters (An ,cn), at which each
orbit of level n has some given synchronous and asynch
nous residuesR0 and R1 (5R25•••5RN21) ~e.g., R051
and R150). Then the sequence$(An ,cn)% converges geo-
metrically to the zero-coupling critical point (A1* ,0). As in
the uncoupled inverted pendulum@11#, the sequence$An%
obeys a scaling law

DAn;d2n for largen, ~33!

whereDAn5An2An21 andd.4.67. The value of the scal
ing factor d agrees well with the Feigenbaum consta
~54.669 . . . ! of the 1D map@12#. We also note that the
sequence$cn% obeys a scaling law

Dcn;m2n for largen, ~34!

where Dcn5cn2cn21. The sequence of the scaling fact
$mn% (5Dcn /Dcn11) of level n is listed in the second col
umn of Table I, and converges to a constantm (.22.5),

-

lity



to
o-

e
le

ou

-

al
ne

cal

nt
ex-

f
con-

w

or

e
ing
ch

or-

si-

e.
l

to

he

ling
are
ses

th
ow

7238 PRE 58SANG-YOON KIM AND BAMBI HU
which agrees well with the coupling-parameter scaling fac
a ~522.502 . . . ! of the coupled 1D maps near the zer
coupling critical point@14#. It was also shown in Ref.@14#
that the scaling factora is just the largest relevant ‘‘coupling
eigenvalue’’ ~CE! of the zero-coupling fixed map of th
renormalization transformation for the case of the coup
1D maps.

We also study the coupling effect on the asynchron
residueR1,n of the synchronous orbit of period 2n near the
zero-coupling critical point (A1* ,0). Figure 3 shows three
plots of R1,n(A1* ,c) versusc for n55, 6 and 7. Forc50,
R1,n converges to a constantR1* ~51.300 59 . . . !, called the
critical asynchronous residue, asn→`. However, whenc is
nonzero R1,n diverges as n→`, i.e., its slope Sn
([ ]R1,n /]c u(A

1* ,0)) at the zero-coupling critical point di

verges asn→`.
As in the scaling for the coupling parameterc, the se-

quence$Sn% also obeys a scaling law

Sn;nn for largen. ~35!

The scaling factornn (5Sn11 /Sn) of level n is listed in the
third column of Table I, and converges to a constantn (.
22.5) asn→`. Note also that the value ofn agrees well
with that of the largest relevant CEa of the zero-coupling
fixed map.

TABLE I. For the case of theU route, the scaling factorsmn and
nn in the scaling for the coupling parameter and the slope of
asynchronous residue at the zero-coupling critical point are sh
in the second and third columns, respectively.

n mn nn

4 23.517 22.958
5 22.904 22.627
6 22.530 22.480
7 22.495 22.522

FIG. 3. Plots of the asynchronous residueR1,n(A1* ,c) vs c near
the zero-coupling critical point forn55, 6, and 7.
r

d

s

We next consider the cases ofC routes, each of which
converges to a critical line segment. Two kinds of addition
critical behaviors are found at each critical line segment; o
critical behavior exists at both ends, and the other criti
behavior exists at interior points. In eachC route, there are
two kinds of self-similar sequences of parameters (An ,cn),
at which each synchronous orbit of leveln has some given
synchronous and asynchronous residuesR0 andR1; the one
converges to the left end point of the critical line segme
and the other converges to the right end point. As an
ample, consider theC route in Fig. 2~b!, which converges to
the critical line segment with two ends (A1* ,cl) and (A1* ,cr).
We follow, in the C route, two self-similar sequences o
parameters, one converging to the left end and the other
verging to the right end. In both cases, the sequence$An%
converges geometrically to its accumulation valueA1* with
the 1D scaling factord (.4.67) like the case of theU route.
The sequences$cn% for both cases also obey the scaling la

Dcn;m2n for largen, ~36!

where Dcn5cn2cn21. The sequence of the scaling fact
mn (5Dcn /Dcn11) of level n is listed in Table II, and con-
verges to its limit valuem (.2). We also note that the valu
of m agrees well with that of the coupling-parameter scal
factor (n52) of the coupled 1D maps near both ends of ea
critical line segment@14#. It was also shown in Ref.@14# that
the scaling factorn (52) is just the only relevant CE of a
nonzero-coupling fixed map of the renormalization transf
mation for the case of the coupled 1D maps.

Figure 4~a! shows the behavior of the asynchronous re
due R1,n(A1* ,c) of the synchronous orbit of period 2n (n
55, 6 and 7! near the critical line segment in Fig. 2~b!.
Magnified views near both endscl andcr are also given in
Figs. 4~b! and 4~c!, respectively. Forc5cl andcr , R1,n con-
verges to a critical asynchronous residueR1* (50) as n
→`, which is different from that for the zero-coupling cas
The sequence of the slopeSn of R1,n at both ends obeys wel
the scaling law

Sn;nn for largen. ~37!

The two sequences of the scaling factorsnn (5Sn11 /Sn) of
level n at both ends are listed in Table III, and converge
their limit valuesn.2, which agrees well with the only CE
(n52) of the nonzero-coupling fixed map governing t

TABLE II. We followed, in theC route in Fig. 2~b!, two self-
similar sequences of parameters (An ,cn), at which the pair of resi-
dues (R0,n ,R1,n) of the synchronous orbit with period 2n is (1,0.1).
They converge to both ends of the critical line segment. The sca
factors of the coupling parameter at the left and right ends
shown in the second and third columns, respectively. In both ca
the scaling factors seem to converge to the same limit valuem.2.

n mn mn

4 3.66 3.93
5 2.81 3.04
6 2.02 2.15
7 1.93 1.99

e
n
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critical behavior at both ends for the case of the coupled
maps. However, for any fixed value ofc inside the critical
line segment,R1,n converges to a critical asynchronous re
due R1* (50.5) asn→` @see Fig. 4~a!#. This case ofR1*
50.5 corresponds to the superstable case ofl1* 50 (l1* : the
critical asynchronous Floquet multiplier! for the coupled 1D
maps@14#, because Eq.~22! of R for the case of 2D maps
reduces to the equation ofR50.53(12l) for the case of
1D maps. We also note that as in the case of the coupled
maps, there exists no scaling factor of the coupling para
eter inside the critical line segemnt, and hence the coup
parameter becomes an irrelevant one at interior crit
points. Thus the critical behavior inside the critical line se
ment becomes the same as that of the uncoupled inve
pendulum~i.e., that of the 1D map!, which will be discussed
in more details below. This kind of 1D-like critical behavio

FIG. 4. ~a! Plots of the asynchronous residueR1,n(A1* ,c) vs c
near the critical line in Fig. 2~b! for n55, 6, and 7. Their magnified
views near the both endscl and cr are also given in~b! and ~c!,
respectively.

TABLE III. The scaling factorsnn’s in the scaling for the slope
of the asynchronous residue at the left and right ends of the cri
line segment in Fig. 2~b! are shown in the second and third co
umns, respectively.

n nn nn

4 2.528 2.525
5 2.071 2.072
6 2.001 2.001
7 2.000 2.000
D

-

D
-
g
l

-
ed

was found to be governed by another nonzero-coupling fi
map with no relevant CE for the case of the coupled
maps@14#.

There exists a synchronous quasiperiodic orbit on theA
5A1* line. As mentioned in Sec. III, its synchronou
Lyapunov exponents are the same as the Lyapunov e
nents of the uncoupled inverted pendulum, i.e.,s0,150 and
s0,2522pbV. The coupling affects only the pair of asyn
chronous Lyapunov exponents (s1,1,s1,2) @5(s2,1,s2,2)5
•••5(sN21,1,sN21,2)#. The maximum asynchronou
Lyapunov exponents1,1 near the critical line segment in Fig
2~b! is shown in Fig. 5. Inside the critical line segment (cl
,c,cr), the synchronous quasiperiodic orbit on the synch
nization plane becomes a synchronous attractor withs1,1
,0. Since the dynamics on the synchronous attractor is
same as that of the uncoupled inverted pendulum, the crit
maps at interior points exhibit essentially 1D-like critical b
haviors, because the critical behavior of the uncoupled
verted pendulum is the same as that of the 1D maps@11#.
However, as the coupling parameterc passes throughcl and
cr , the maximum asynchronous Lyapunov exponents1,1 of
the synchronous quasiperiodic orbit increases from ze
Consequently, the synchronous quasiperiodic orbit cease
be an attractor outside the critical line segment, and the
tem of the coupled inverted pendulums is asymptotically
tracted to another synchronous rotational attractor of p
iod 1.

What happens beyond the first period-doubling transit
point A1* is also interesting. As in the uncoupled 1D invert
pendulum@11#, with increasing the amplituteA further from
A5A1* , the unstable inverted state undergoes a cascad
resurrections, i.e., it will restabilize after it loses its stabilit
destabilize again, and so forthad infinitum. For each case o
the resurrections, an infinite sequence of PDB’s leading

al

FIG. 5. Plot of the maximum asynchronous Lyapunov expon
s1,1 of the synchronous quasiperiodic orbit near the critical line
Fig. 2~b!. This plot consists of 450c values, each of which is
obtained by iterating the Poincare´ mapP 20 000 times to eliminate
transients and then averaging over another 5000 iterations. The
ues of s1,1 at both ends of the critical line are zero, which a
denoted by solid circles.
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chaos follows. Consequently, the coupled inverted pen
lums exhibit multiple period-doubling transitions to chaos

As the first example, we consider the second peri
doubling transition to chaos. Figure 6~a! shows the second
stability diagram of the synchronous inverted station
point and asymmetric orbits of leveln ~period 2n, n50,1,2,
and 3! in the A-c plane. When crossing the horizontal sol
boundary line of its stability region IS, the unstable invert
state restabilizes with birth of a new unstable synchron
symmetric orbit of period 2 via a synchronous subcritic
PDB. This is the second resurrection of the inverted st
However, when the horizontal dashed boundary line
crossed, the stabilized inverted state becomes unstable
synchronous supercritical PFB, which results in the birth o
conjugate pair of synchronous asymmetric orbits with per
1. Then each synchronous asymmetric orbit of leveln be-
comes unstable at the horizontal solid boundary line of
stability region via a synchronous supercritical PDB, a
gives rise to the birth of a synchronous asymmetric peri
doubled orbit of leveln11. Such an infinite sequence term
nates at a finite value ofA2* (53.829 784 . . . ), which is the
second period-doubling transition point of the uncoupled
verted pendulum@11#. Note that the treelike structure of th
stability diagram in Fig. 6~a! is essentially the same as that
Fig. 2~a!. Hence, the critical set also consists of the ze
coupling critical point and an infinite number of critical lin
segments, as in the first period-doubling transition case
order to study the critical behaviors on the critical set,
follow the synchronous asymmetric orbits up to leveln57
in the U route and in the rightmostC route. It is found that
the critical behaviors are the same as those for the
period-doubling transition case. That is, there exist th
kinds of critical behaviors at the zero-coupling critical poin
both ends of each critical line segment and interior point

As the second example, we also consider the third per
doubling transition to chaos. The third stability diagram
the synchronous orbits withq51, 2, 4, and 8 is shown in
Fig. 6~b!. A synchronous subcritical PFB occurs when cro
ing the horizontal dashed boundary line of the IS. Con
quently, the unstable inverted state restabilizes with birth
a pair of unstable orbits with period 1. This is the thi
resurrection of the inverted state. However, the stabili
inverted state becomes unstable via a synchronous super
cal PDB when the horizontal solid boundary line of the IS
crossed, and gives rise to the birth of a symmetric 2-perio
orbit. The subsequent bifurcation behaviors are the sam
those for the first period-doubling transition to chaos. That
a third infinite sequence of synchronous supercritical PD
follows and ends at a finite valueA3* (510.675 090 . . . ),
which is the third period-doubling transition point of the u
coupled inverted pendulum@11#. Note also that the treelike
structure of the third stability diagram is essentially the sa
as that in Fig. 2~a!. Hence the critical set is composed of th
zero-coupling critical point and an infinity of critical lin
segments. Furthermore, the critical behaviors on the crit
set are found to be the same as those for the first per
doubling transition case.

In addition to the linear-coupling case~32!, we have also
studied two other nonlinear-coupling cases:
u-
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g~x1 , . . . ,xN!5cF 1

N (
m51

N

xm
n 2x1

nG , n52 and 3.

~38!

First stability diagrams of the synchronous orbits for t
cases of the quadratic and cubic couplings are shown in F
7~a! and 7~b!, respectively. Their treelike structures are e
sentially the same as that in Fig. 2~a!. Hence, the zero-
coupling critical point and an infinite number of critical lin
segments constitute the critical set for each nonline
coupling case. Moreover, the critical behaviors for the
nonlinear-coupling cases are also found to be the sam
those for the linear-coupling case.

B. Nonglobal coupling

Here we study the nonglobal-coupling cases with the c
pling range K,(N/2)@(N21)/2# for even ~odd! N. The
structure of the critical set becomes different from that
the global-coupling case, because of a significant chang
the stability diagram of the synchronous orbits with peri
2n (n50,1,2, . . . ), aswill be seen below.

FIG. 6. ~a! Second and~b! third stability diagrams of synchro
nous periodic orbits. HereA2* ~53.829 784 . . . ! and A3*
~510.675 090! are just the second and third period-doubling tran
tion points of the uncoupled inverted pendulum, respectively. T
stable regions of the inverted stationary point, an asymmetric o
of period 1, a symmetric 2-periodic orbit, and an asymmetricN-
periodic (N52, 4, and 8! orbit are denoted by IS, ASP1, SP2, an
PN, respectively. The solid and dashed boundary lines also re
sent the same as those in Fig. 1.
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PRE 58 7241CRITICAL BEHAVIOR OF PERIOD DOUBLINGS IN . . .
As an example, we consider a linearly coupled, near
neighbor coupling case withK51, in which the coupling
function is

g~x1 , . . . ,xN!5
c

3
~x21xN22x1! for N.3. ~39!

As shown in Sec. III, the stable regionUN , in which a syn-
chronous orbit is stable against the perturbations of b
modes with indices 0 andj (Þ0), varies depending on th
mode numberj , because the asynchronous residueRj ( j
Þ0) depends onj. To find the stability region of the syn
chronous orbit, one can start with the stability regionUG for
the global-coupling case. Rescaling the coupling parametc
by a scaling factor 1/SN(1,j ) @SN(K, j ) is given in Eq.~30!#,
the stable regionUG is transformed into a stable regio
UN(1,j ). Then the stability region of the synchronous orbit
given by the intersection of all such stable regionsUN’s.

As an example, we consider the case withN54. Figure 8
shows the stability regions of the synchronous asymme
2n-periodic (n51, 2, 3, and 4! orbits. Note that the scaling
factor 1/S4(1,j ) has its minimum value34 at j 52. However,
for each synchronous orbit,U4(1,2) itself cannot be the sta
bility region, because bifurcation curves of different mod
with nonzero indices intersect one another. We now exam
the structure of the stability diagram in Fig. 8, starting fro
the left side of the stability region of the synchr

FIG. 7. First stability diagrams of synchronous periodic orb
near thec50 line for the cases of~a! the quadratic and~b! cubic
couplings. Here SP2 and PN (N52, 4, and 8! denote the stable
regions of a symmetric orbit of period 2 and an asymmetric o
with periodN, respectively.
t-

th

r

ic

s
e

nous asymmetric orbit of level 1 (n51). For the case of
level 2 (n52), the zeroc side of U4(1,2), including ac
50 line segment, remains unchanged, whereas the other
becomes flattened by the bifurcation curve of the asynch
nous mode withj 51 @21#. Due to the successive flattenin
with increasing leveln, a significant change in the stabilit
diagram occurs. Of the infinite number of period-doubli
routes for the global-coupling case, only theU route ending
at the zero-coupling critical point remains. Thus only t
zero-coupling point is left as a critical point in the parame
plane.

Consider a self-similar sequence of parameters (An ,cn),
at which the synchronous orbit of period 2n has some given
residues, in theU route for the global-coupling case. Resca
ing the coupling parameter with the minimum scaling fac
1/S4(1,2) (50.75), the sequence is transformed into a se
similar one for theN54 case of nearest-neighbor couplin
Hence, the critical behavior near the zero-coupling criti
point becomes the same as that for the global-coupling c

The results for the nearest-neighbor coupling case w
K51 extends to all the other nonglobal-coupling cases w
1,K,N/2@(N21)/2# for even ~odd! N. For each
nonglobal-coupling case withK.1, we first consider a mode
with index j min for which the scaling factor 1/SN(K,j) be-
comes the smallest one and the stability regionUN(K, j min)
including ac50 line segment. Here the value ofj min varies
depending on the rangeK. Like the K51 case, the zeroc
side ofUN(K, j min) including thec50 line segemnt remains
unchanged, whereas the other side becomes flattened b
bifurcation curves of the other modes with nonzero indic
Thus the overall shape of the stability diagram of t
2n-periodic (n51,2,3, . . . ) orbits born via synchronous su
percritical PDB’s becomes essentially the same as that
the nearest-neighbor coupling case. Consequently, only

it

FIG. 8. Stability diagram of synchronous periodic orbits in fo
linearly coupled inverted pendulums with nearest-neighbor c
pling (K51). Each stable region is bounded by its solid bound
curves. For a synchronous orbit of periodq, the PDB~PFB! curve
of the mode with indexj is denoted by a symbolqj

PD~PF! .
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U route ending at the zero-coupling critical point is left as
period-doubling route, and the critical behavior near
zero-coupling critical point is also the same as that for
global-coupling case.

V. SUMMARY

The critical behaviors of period doublings in the syste
of N symmetrically coupled inverted pendulums have be
investigated by varying the two parametersA and c. As in
the single inverted pendulum@11#, the coupled inverted pen
dulums exhibit multiple period-doubling transitions to cha
with increasingA. We have studied the first three perio
doubling transitions to chaos. For each period-doubling tr
sition to chaos, it has been found that the critical behav
vary depending on whether or not the coupling is global. F
the global-coupling case the zero-coupling critical point a
an infinity of critical line segments constitute the same cr
cal set in theA-c plane, independently ofN. However, for
s

E

ce

f

-

e
e

n

-
rs
r
d
-

any other nonglobal-coupling cases the structure of the c
cal set becomes different from that for the global-coupli
case, because of a significant change in the stability diag
of 2n-periodic orbits (n50,1,2, . . . ). Thecritical scaling be-
haviors on the critical set have been also found to be
same as those for the abstract system of the coupled 1D m
@14#.
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