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We study the critical behaviors of period doublingsNn(N=2,3,4,...) coupled inverted pendulums by
varying the driving amplitud@ and the coupling strength It is found that the critical behaviors depend on
the range of coupling interaction. In the extreme long-range case of global coupling, in which each inverted
pendulum is coupled to all the other ones with equal strength, the zero-coupling critical point and an infinity
of critical line segments constitute the same critical set inAtteplane, independently di. However, for any
other nonglobal-coupling cases of shorter-range couplings, the structure of the critical set becomes different
from that for the global-coupling case, because of a significant change in the stability diagram of periodic
orbits born via period doublings. The critical scaling behaviors on the critical set are also found to be the same
as those for the abstract system of the coupled one-dimensional [849063-651X98)05912-1

PACS numbg(s): 05.45:+b, 03.20+i, 05.70.Jk

I. INTRODUCTION doubling transition pointA*, beyond which chaos sets in.
Consequently, an infinite series of period-doubling transi-
The nonlinear dynamics of coupled nonlinear oscillatorstions to chaos occur successively with increastagrhis is
has attracted considerable attention in recent years. Sugh contrast to the one-dimensionélD) map [12], where
coupled oscillators are used to model many physical, chemienly single period-doubling transition to chaos takes place.
cal, and biological systems such as coupfed junctions However, the critical scaling behaviors at edath period-
[1], Josephson-junction arraj/2], charge-density wave8],  doubling transition poinA* (i=1,2,3,...) are thesame as
chemical-reaction systenfi4], and biological-oscillation sys- those for the 1D map.
tems [5]. They exhibit diverse bifurcations, multistability, In this paper we study the critical behaviors of period
chaos, pattern formation, and so on. doublings in the system dfl (N=2,3,4,...) symmetrically
The coupled nonlinear oscillators studied here are coupledoupled inverted pendulums by varying the driving ampli-
inverted pendulums, consisting df identical inverted pen- tude A and the strengtle of coupling between the inverted
dulums coupled through some interaction mechanism. Weendulums, and also compare them with those for the ab-
first consider a constituent element of the coupled dynamicadtract system of the coupled 1D majis3,14. The “cou-
system, i.e., a single parametrically forced pendulum with aling effect” of the strength and range of coupling on the
vertically oscillating suspension point. It can be described bycritical behaviors are particularly investigated. Both the

a normalized equation of motidi®], structure of the critical set and the critical scaling behaviors
. . for the coupled inverted pendulums are found to be the same
X=f(x,X,t)= — 27 BQAX— 27(Q%— A cos 2mt)sin 27X, as those for the coupled 1D maps found by one ofiim)

(1) and Kook[14].

This paper is organized as follows. We first introdide
wherex is a normalized angle with range=[0,1), 8 is a  symmetrically coupled inverted pendulums in Sec. Il, and
normalized damping parameté, is the normalized natural discuss their dynamical symmetries and couplings. Bifurca-
frequency of the unforced pendulum, afxdis the normalized tions associated with stability of periodic orbits and
driving amplitude of the vertical oscillation of the suspensionLyapunov exponents in the coupled inverted pendulums are
point, respectively. This parametrically forced pendulum haslso discussed in Sec. Ill. We then investigate the critical
an “inverted” stationary state, corresponding to the verti- behaviors of period doublings in the coupled inverted pen-
cally up configuration withx= 3. It is well known that as the dulums in Sec. IV. As in the single inverted pendul{ibi],
parameteA is increased, the inverted pendulum undergoes &oupled inverted pendulums undergo multiple period-
cascade of “resurrections,” i.e., it becomes stabilized aftedoubling transitions to chad®.g., see Figs.(3), 6(a), and
its instability, destabilizes again, and so fodH infinitum  6(b) for the “stability trees” associated with the first, sec-
[7-10Q. Recently, we have studied bifurcations and transi-ond, and third period-doubling transitions to chaos, respec-
tions to chaos associated with such resurrections of the irtively]. For each period-doubling transition to chaos, the
verted pendulunill]. For each case of the resurrections, thecritical behaviors vary depending on whether or not the cou-
stabilized inverted state exhibits an infinite sequence opfling is global. In the extreme long-range case of global
period-doubling bifurcations accumulating at a period-coupling, the zero-coupling critical point withb=0 and an

infinity of critical line segments lying on the lind=A*
constitute the same critical set in tiec plane, irrespec-
*Electronic address: sykim@cc.kangwon.ac.kr tively of N. However, for any other nonglobal-coupling cases
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of sh(.)rter.-range coupling_s, a significant change_ocgurs inthex, (t)=- .- =xy(t)=x*(t), yi(t)=---=ypy(t)=y*(1).
stability diagram of 2-periodic (h=0,1,2,. . .) orbits in the 7
A-c plane, and consequently the structure of the critical set . .
becomes different from that for the global-coupling case. IOtherwise it is called artout-of-phasg asynchronous orbit.

is also found that the critical scaling behaviors on the critical 1€ We study only the synchronous orbits. They can be

set are the same as those for the abstract system of tf§@Sily found from the uncoupled inverted pendul(iy be-
coupled 1D mapg14]. Finally, a summary is given in cause the coupling functiamsatisfies the condltlofs). Note
Sec. V. also that for these synchronous orbits, the Poincaap P

also has the inversion symmetry such that

II. SYMMETRIES AND COUPLINGS IN THE COUPLED SPS2)=P(z) forallz, (8

INVERTED PENDULUMS _ o
where S(z) = —z. If a synchronous orbifz(t)} of P is in-

In this section we introduchl symmetrically coupled in-  variant undes it is called a symmetric orbit. Otherwise, it is
verted pendulums and then discuss their symmetries anghlled an asymmetric orbit and has its “conjugate” orbit
couplings. ConsideN symmetrically coupled inverted pen- Sfz(t)}.

dulums with a periodic boundary condition We now discuss the couplings between the inverted pen-
. . dulums. Consider an element, say thth element, in theN
Xm= F(Xm Xm ) +9(Xm Xm+ 15 -+ - Xm—1)s coupled inverted pendulums. Then thet 8)th elements
2 are called thedth neighbors of themth element. Here we
m=12,...,N. consider the case where the coupling extends toKite(1

o N ) <K= (N/2)[(N—1)/2]) for even(odd N) neighbots) with
Here the periodic boundary condition imposesi(t)  equal strength. Hereafter we will call the numbethe range
=X n(t) for all m, the functionf (x,x,t) is given in Eq.(1), of the coupling interaction.

andg(xy, ... Xn) is a coupling function, obeying the con- A general form of coupling for odtll (N=3) is given by
dition . K
g(x,...x)=0 forallx. (3) 9(Xg, ... Xn)= mIZE_K [U(Xg+) —U(X1)]
The second-order differential equatiai®s are reduced to K
a set of first-order differential equations, _ 1
=0 oy, 2, UCkia) —U(xa) |,
. ==K
Xm=Ym: (48
. B N—-1
ym:f(Xm,ym,t)+g(Xm,Xm+1,...,Xm_l), K_l"”’ 2’ (9)
4b
m=1,2,... N. (4b) wherec is a coupling parameter andis a function of one

variable. Note that the coupling extends to Kih neighbors
Consider an initial orbit poing(0) [ =(z,(0), ... z\(0))],  with equal coupling strength, and the functigrsatisfies the
wherez;=(x;,y;) (i=1,... N). Then its Poincarenaps can condition (3). The extreme long-range interaction fét
be computed by sampling the orbit poirg@m) at the dis- =(N—1)/2 is called a global coupling, for which the cou-
crete timet=m (m=1,2,3,....). Wewill call the transfor-  pling functiong becomes

mation z(m)—z(m+1) the Poincaremap, and writez(m N
+1)=P(z(m)). _c B
The 2N-dimensional PoincarmapP has a cyclic permu- 90x, - X = m; [u(xm) = u(x0)]
tation symmetry such that
N
. 1
o Po(2)=P(z) forallz, (5) =c Nmzzl U(X) — U(X1) |- (10)
where o is a cyclic permutation ofz such that o ) ] o ) )
(21,25, ... ZN)=(2, . . . Zn,21) and o~ is its inverse.  This is akind of mean-field coupling, in which each inverted
The set of all fixed points of forms a 2D synchronization Pendulum is coupled to all the other ones with equal cou-
plane, on which pling strength. All the other couplings witK<(N—1)/2
(e.g., nearest-neighbor coupling with=1) will be referred
X1=-- =Xy, Y1=---=Yn. (6)  to as nonglobal couplings. The=1 case forN=3 corre-

sponds to both the global coupling and the nearest-neighbor
It follows from Eq. (5) that the cyclic permutatioor com-  coupling.
mutes with the Poincarenap P, i.e., cP=Pg. Conse- We next consider the case of edri{N=2). The form of
guently, the 2D synchronization plane becomes invariant uncoupling of Eq.(9) holds for the cases of nonglobal cou-
derP, i.e., if a pointz lies on the 2D synchronization plane, plings with K=1,...,(N—2)/2 (N=4). The global cou-
then its imageP(z) also lies on it. An orbit is called(a) pling for K= N/2 (N=2) also has the form of Eq10), but
(in-phasé synchronous orbit if it lies on the 2D invariant it cannot have the form of Eq9), because there exists only
synchronization plane, i.e., it satisfies one farthest neighbor fdf = N/2, unlike the case of odN.
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The K=1 case forN=2 also corresponds to the nearest-where

neighbor coupling as well as to the global coupling, like the

N=3 case.

Ill. STABILITY, BIFURCATIONS, AND LYAPUNOV
EXPONENTS OF SYNCHRONOUS ORBITS

dg(Xq1, -« XN)

Gi(x)= o (13

Xq =+ =XN=X

In this section we first discuss the stability of synchronougereafter the functionss,’s will be called “reduced” cou-

periodic orbits in the PoincamapP of the coupled inverted
pendulums, using the Floquet thed@p]. Bifurcations asso-

pling functions ofg(Xq, ... Xn)-
Let 5§;(t) be the Fourier transform afxq(t), i.e.,

ciated with the stability and Lyapunov exponents are then

discussed.

The stability analysis of an orbit in many-coupled in-
verted pendulums can be conveniently carried out by Fourier

transforming with respect to the discrete spdo@ [16)].
Consider an orbif{x,,(t); m=1,... N} of the N coupled
inverted pendulumg2). The discrete spatial Fourier trans-
form of the orbit is

1 .
Fxn(D]= 2, €2 (D =£(0),

11
j=0,1,...N—1. v

The Fourier transforng;(t) satisfies¢] (t)=é&y—j(t) (* de-
notes a complex conjugateand the wavelength of a mode
with index j is N/j for j<N/2 andN/(N—j) for j>N/2.
Here &, corresponds to the synchrono(FRouriep mode of
the orbit, while all the otheg;’s with nonzero indiceg cor-
respond to the asynchrono(Souriep modes.

To determine the stability of a synchronogsperiodic
orbit [x1(t)=- - - =xp(t)=x* (1) for all t and x* (t)=x*(t
+q)], we consider an infinitesimal perturbati¢ix,(t)} to
the synchronous orbit, i.eXy(t)=x*(t)+ Xy (t) for m
=1,... N. Linearizing theN-coupled inverted pendulums
(2) at the synchronous orbit, we obtain

o af(x* Xt b af(x* x* 1) .
M= Xy F ——————— X

m (9X* m (QX* m
N
+|§1 Gi(X*) X4 m-1, (12
0
J=| ofoxx x ) XN
(0 ——————+ 2> Gy(x*
X =1

Note that each; is a g-periodic matrix, i.e.,J;(t)=J;(t
+q). Using the Floquet theorjyl 5], we study the stability of
the synchronoug-periodic orbit against thith-mode pertur-
bation as follows. Let;(t)=(¢{"(t),4{?(t)) be a funda-
mental solution matrix withd®;(0)=1. Here (bj(l)(t) and

N
1 .
8¢j= Floxm(D]= g 2, € 27Xy,

j=0,1,...,N—1. (14

Here 8¢, is the synchronous-mode perturbation, and all the
other 6§;’s with nonzero indiceg are the asynchronous-
mode perturbations. Then the Fourier transform of @Q)
becomes

L af (Xt X)L
M e
N

af (x* ,x* t o
+ ¥+2 Gl(x*)eZm(l—l)]/N 8¢,
=1

Ix*

j=0,1,.. N—1. (15)

Note that all the modeé&§;’s become decoupled for the syn-
chronous orbit.
Equation(15) can also be put into the form

5¢; 8¢,
(?J):Jj(t)< g’), j=01,...N-1, (16
where
1
)e27Ti(|*1)]-/N M (17)
ax*
[
(55;(0):@_(0(5&(0))
on;(1) ! 67;(0))’
(18
j=01,...N—1,

¢J(2)(t) are two independent solutions expressed in column
vector forms, and is the 2<2 unit matrix. Then a general Substitution of Eq(18) into Eq.(16) leads to an initial-value
solution of theg-periodic system has the following form:  problem to determiné;(t):
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Xy 1 _ o — through 1 (i.e., a Floquet multiplier\; decreases through
P =01, P;(0)=1. (19 —1), it becomes unstable via periojd—doubling bifurcation
(PDB). We also note that(a) synchronougasynchronous
bifurcation takes place fgr=0 (j #0). For each case of the
synchronougasynchronousPFB and PDB, two types of su-
percritical and subcritical bifurcations occur. For the super-
critical case of the synchronougssynchronous PFB and
PDB, the synchronous periodic orbit loses its stability and
gives rise to the birth of a pair of new stable synchronous
) (asynchronousorbits with the same period and a new stable
Aj—trMjAj+detM;=0, (20) synchronous(asynchronous period-doubled orbit, respec-
tively. However, for the subcritical case of the synchronous
where trM; and deM; denote the trace and determinant of (asynchronousPFB and PDB, the synchronous periodic or-
M;, respectively. The eigenvalues; ; and\;, of M; are  bit becomes unstable by absorbing a pair of unstable syn-
called the Floquetstability) multipliers, which characterize chronous(asynchronousorbits with the same period and an
the stability of the synchronous-periodic orbit against the unstable synchronou&@synchronousperiod-doubled orbit,
jth-mode perturbation. Since thje=0 case corresponds to respectively(For more details on bifurcations, refer to Ref.
the synchronous mode, the first pair of Floquet multipliers[19].)
(Mo1,Mo,0) is called the pair of synchronous Floquet multi- 1t follows from condition (3) that the reduced coupling
pliers. On the other hand, all the other pairs of Floquet mulfunctions of Eq.(13) satisfy
tipliers are called the pairs of asynchronous Floquet multipli-
ers, because all the other cases jef0 correspond to N
asynchronous modes. 21 Gi(x)=0. (23
As shown in Ref[17], detM; is given by

Each 2<2 matrixM; [=®;(q)], which is obtained through
integration of Eq.(19) over the periodg, determines the
stability of the g-periodic synchronous orbit against the
jth-mode perturbation.

The characteristic equation of each matrM; (]
=0,1,...N=1)is

Hence the matriX17) for j=0 becomes
detM, = e/drjdt=g~2mB0%, (D)

0 1
Note that all the matriceb!;'s have the same constant Jaco- : :
] = * * * *
bian determinanfless than unity. Accordingly, each pair of Jo(1) If X" X", 1) M ' (24
Floquet multipliers §; 1,X;2) (j=0,1,...,N—1) lies either x> Ix*
on the circle of radiuse™ "9 or on the real axis in the S ) ) ) )
complex plane. The synchronous periodic orbit is stablelhis is just the linearized Jacobian matrix for the case of the

against thejth-mode perturbation when the pair of Floquet uncoupled inverted pendulufii1]. Hence the synchronous
multipliers (\; 1,);,) lies inside the unit circle in the com- residueR, becomes the same as the residue of the uncoupled
plex plane. We first note that the Floquet multipliers neverinverted pendulum, i.e., it depends only on the amplitide
cross the unit circle in the complex plane, and hence Hop¥Vhile there is no coupling effect dRy, the coupling affects
bifurcations do not occur. Consequently, the synchronous pedll the other asynchronous residugs(j#0).

riodic orbit can lose its stability against tigh-mode pertur- In case of the global coupling of Eq10), the reduced
bation when a Floquet multipliex; decreasegincreases  coupling functions become

through—1 (1) on the real axis.

A more convenient real quantiti;, called the residue, G/(x)= (1-N)G(x) forl=1 29
and defined by ! G(x) forl#1,
1+detM;—trM; ) where G(x) =(c/N))u’(x). SubstitutingG,’s into the sec-
Rj= 2(1+detM;) j=01...N-1, (22 ond term of the (2,1) entry of the matrik(t) of Eq. (17),
we have
was introduced in Ref.18] to characterize stability of peri- N .
odic orbits in 2D dissipative maps with constant Jacobian S @ (e DiN= 0 forj=0 26
determinants. Here the first ori®, is associated with the = | —cu X forj+0.

stability against the synchronous-mode perturbation, and

hence it may be called the synchronous residue. On the othéfence all the asynchronous residigs(j #0) become the

hand, all the other oneR; (j#0) are called the asynchro- same, i.e.R;=---=Ry_;. Consequently, there exist only

nous residues, because they are associated with the stabilityo independent residud®, andR,, independently of.

against the asynchronous-mode perturbations. We next consider the nonglobal coupling of fo(@), and
A synchronous periodic orbit is stable against thedefine

jth-mode perturbation when<OR; <1 [i.e., the pair of Flo-

quet multipliers §; 1,\j ) lies inside the unit circle in the

complex plangé WhenR; decreases through Q.e., a Flo-

quet multiplier \; increases through 1), the synchronous

periodic orbit loses its stability via saddle-node or pitchforkwhere I=K<(N—2)/2(N—3)/2] for even(odd N larger

bifurcation (PFB). On the other hand, wheR; increases than 3. Then we have

G(x)= u’(x), (27)

2K+1
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—2KG(x) forl=1
Gi(x)=1 G(x) for 2<I<1+K or for N+1-K=<I<N (28)
0 otherwise.

Substituting the reduced coupling functions into the matrixcoupling cases, i.elJy=Uy\(K,j). To find the stability re-
J;(1), the second term of the (2,1) entry &f(t) becomes gion of a synchronous periodic orbit in th¢ coupled in-
\ verted pendulums with a giveld, one may start with the
R ] stability regionUg for the global-coupling case. Rescaling
Zl G (x)e*m ™ PIN= —Sy(K,j)e u' (x), (29 the coupling parametez by a scaling factor By(K.j) for
each nonzerg, the stable regioJ; is transformed into a
where stable regiorlJ(K,j). Then the stability region of the syn-
chronous periodic orbit is given by the intersection of all
such stable regiongy’s.

: 7
K - SinN(2K+1) = Finally, we briefly discuss Lyapunov exponents of a syn-
ik N L o, .
SvK,j)=— =1 chronous orbit in the Poincarmap P, characterizing the
2K+ 1= N (2K +1)si ) mean exponential rate of divergence of nearby orfit.
N As shown in Eq.(15), all the synchronous and asychronous

(30 modes of a perturbation to a synchronous orbit becomes de-
) ) coupled. Hence each matiM; [=®;(1)] with g=1 deter-
Hence, unlike the global-coupling case, all the asynchronougines the pair of Lyapunov exponentsr;(,a;2) (]

residues vary depending on the coupling rakgas well as -0 1, .. N—1), characterizing the average exponential
on the mode numbey. Since Sy(K,j)=Sy(K.N—j), the  rates of divergence of th¢th mode perturbation, where
residues satisfy oj1=0j,. Since eactM; has the same constant Jacobian

determinant(i.e., deﬂ\Ajze‘z’TﬁQ), each pair of Lyapunov
exponents satisfies; 1+ o; ,= —27B(). Note also that the
first pair of synchronous Lyapunov exponenig ¢, ) is
just the pair of the Lyapunov exponents of the uncoupled
inverted pendulunill], and the coupling affects only all the

R=Ry_j, j=01,..N-L1. (30

Thus it is sufficient to consider only the case ok
<(N/2) [(N—1)/2] for even(odd N. Comparing the ex-

pression in Eq(29) with that in Eq.(26) for j#0, one can other pairs of asynchronous Lyapunov exponents, (; ,)

eas}iiy_seg that theyl are tE_e sameh exceptf f?]r the f?cto(rj #0). Furthermore, all the pairs of the asynchronous
Sn(K.J). Consequently, making a change of the coupling, y,n6y exponents for the global-coupling case become

parametec— c/[ Sy(K,j)], the residudr; for the nonglobal . _ .
coupling case of rangkl becomes the same as that for theigi:%??ﬁf'égﬁéﬁéﬁ)ous resiéﬁg;_l'l’UN_l’Z)]' asinthe
global-coupling case.
When the synchronous resid&g of a synchronous peri- IV. CRITICAL SCALING BEHAVIORS
odic orbit increases through 1, the synchronous periodic or- OF PERIOD DOUBLINGS
bit loses its stability via synchronous supercritical PDB, giv-
ing rise to the birth of a new synchronous period-doubled In this section, by varying the two parametérandc, we
orbit. Here we are interested in such synchronous supercrittudy the critical scaling behaviors of synchronous PDB'’s in
cal PDB’s. Thus, for each mode with nonzero indewe the N symmetrically coupled inverted pendulums f@r
consider a region in tha-c plane in which the synchronous =0.2 and=0.1. It is found that the critical behaviors de-
periodic orbit is stable against the perturbations of bothpend on the coupling range. In the global-coupling case, in
modes with indices 0 and This stable region is bounded by Which each inverted pendulum is coupled to all the other
four bifurcation curves determined by the equatifs=0  ones with equal coupling strength, the zero-coupling critical
and 1 andR;=0 and 1, and it will be denoted by . point and an infinity of critical line segments constitute the
For the case of global coupling, those stable regions cosame critical set, independently f However, for any other
incide, irrespectively ol andj, because all the asynchro- nonglobql-coupling cases, the structure of the _critical set be-
nous residue®;’s (j#0) are the same, independentlyhsf ~ COmes different from that for the global-coupling case, be-
The stable region for this global-coupling case will be de-cause of a significant change in the stability diagram of the
noted byU . Note thatUg itself is just the stability region Synchronous 2-periodic orbits 0=0,1,2,...). Thecritical
of the Synchronous periodic orbit, irrespective|y N;f be- Scaling behaviors on the critical set are found to be the same
cause the synchronous periodic orbit is stable against thas those for the abstract system of the coupled 1D ritedis
perturbations of all synchronous and asynchronous modes V€ thus consider separately two kinds of couplings, the
the regionUg. Thus the stability diagram of synchronous global- and nonglobal-coupling cases.
orbits of period 2 (n=0,1,2,...) in theA-c plane becomes
the same, independently b
However, the stable regiody varies depending on the We first study theN globally coupled inverted pendulums
coupling rangeK and the mode numbgrfor the nonglobal-  with the coupling function of form{(10). As shown in Sec.

A. Global coupling
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[ll, a synchronous periodic orbit is stable when all its resi-
duesR; (j=0,1,... ,N—1) defined in Eq(22) lie between O 6.0
and 1(i.e., 0<R;<1). HereR, is the synchronous residue
determining the stability against the synchronous-mode per- ;E 45
turbation, while all the other oneR; (j#0) are the asyn- L i
chronous residues determining the stability against the $ 30 I
asynchronous-mode perturbations. For the globally coupled & ~
case, all the asynchronous residues become the same, inde- +
pendently ofj, and hence only one independent asynchro-
nous residude.g.,R;) exists. Accordingly, the stability re-
gion of a synchronous periodic orbit becomes bounded by
four bifurcation lines determined by the equatiétys=0 and
1 andR;=0 and 1. Here th&k;=0 and 1 ;=0 and 1)
lines correspond to the synchrondasynchronousPFB and N B LA m—
PDB lines, respectively. In such a way, we obtain the stabil-
ity diagram of the synchronous "eriodic orbits €
=0,1,2,..) in the A-c plane. Note also that the stability - -
diagram becomes the same, independentliX obecause all
the asynchronous residué&y (j #0) for each synchronous > 0.0 - 7
orbit are also the same, irrespectiveNof Consequently, the
structure of the critical set and the critical behaviors for the
global-coupling case become the same, independentl; of -0.2 -
As an example, we consider a linearly coupled case in , | , | , | ,

which the coupling functiorf10) is 0.40 0.45 0.50 0.55 0.60

1.5 |

0.2 () -

. (32

1 N
g(Xg, ... Xn)=C N 2 Xm— X1
m=1

As in the uncoupled inverted penduluphl], the coupled
inverted pendulums exhibit multiple period-doubling transi-
tions to chaos. Here we study the first three period-doubling
transitions to chaos. For each period-doubling transition to
chaos, the zero-coupling critical point and an infinity of criti-
cal line segments constitute the critical set in e plane.
Three kinds of critical behaviors associated with the scaling
of the coupling parameter are found on the critical set,
while the critical scaling behavior of the amplitudeis al-

ways the same as that of the uncoupled inverted pendulum. 0.3 04 0.5 0.6 0.7

Note that the structure of the critical set and the critical be- X

haviors for the coupled inverted pendulums are found to be

the same as those for the coupled 1D midpE. FIG. 1. (a) Stability diagram of the synchronous orbits of low

Figure Xa) shows the stability diagram of the synchro- periodq=1 and 2 inN linearly coupled inverted pendulums with
nous orbits with low periodj=1 and 2. The stable region of global coupling. Heré\7 (=0.57518k...) is just the first period-
a synchronous orbit is bounded by its PDB and PFB linesdoubling transition point of the uncoupled inverted pendulum. The
The horizontal(nonhorizontal solid and dashed boundary stable regions of the inverted stationary point, a symmetric 2-
lines correspond to synchronotiasynchronousPDB and periodic orbit, and an asymmetric 2-periodic orbit are denoted by
PFB lines, respectively. Each bifurcation may be supercritiSP: SP2, and ASP2, respectively. The horizofinhorizontal
cal or subcritical. solid and dashed bounda_ry lines corrgspond to synchro(rax_mym-
We first consider the bifurcations associated with stabilit chronous PDB and PFB lines, respectivelth) Phase portraits for

. . . . yA=0.5. The phase flow of a symmetric 2-periodic orbit born via a
of the synchronous inverted stationary point, correspondln% . . . .
. . . ynchronous supercritical PDB is denoted by a solid curve, and its
to the vertically up configurationi.e., x;(t)=-- - =xp(t)

. Poincaremaps are represented by the solid circlgs.Phase por-
- —1 - .= = = - ) ) .
=x*(t)=3 a_lnd yu(t)=- _yN(t)__ y*(t)=0]. The_ N~ traits forA=0.57. The phase flows of a conjugate pair of asymmet-
verted state is a symmetric one with respect to the inversiof _periodic orbits born via synchronous supercritical PFB are

symmetryS Its stability region is denoted by the IS in Fig. shown: one is denoted by a solid curve, while the other one is
1(a). For the unforced case o%=0, the inverted state is genoted by a dashed curve. Their Poincaraps are also repre-
ObViOUS|y unstable. However, when CrOSSing the horizontakented by solid and open circles, respectively.

dashed boundary line of the IS, its first resurrection occurs,

i.e., it becomes stabilized with birth of a pair of unstablebilizes again through asynchronous PDB and PFB when the
synchronous asymmetric orbits with period 1 via a subcriti-nonhorizontal solid and dashed boundary curves are crossed,
cal PFB.(For more details on the resurrection of the invertedrespectively. However, it becomes unstable via a synchro-
state, refer to Ref.11].) This stabilized inverted state desta- nous supercritical PDB when crossing the horizontal solid
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ary line of its stable region via a synchronous supercritical
PDB, and gives rise to the birth of a synchronous asymmetric
period-doubled orbit of level+ 1. Such an infinite sequence
ends at a finite value o&} =0.575 1% . . ., which is just the

P8 first period-doubling transition point of the uncoupled in-
J{ | verted pendulunj11]. Consequently, a synchronous quasi-

12 |

)
R S
i::g_

periodic orbit, whose maximum synchronous Lyapunov ex-
ponent is zerdi.e., 0y ,=0), exists on theA=A7 line.

We examine the treelike structure of the stability diagram
in Fig. 2, which consists of an infinite pile &f-shaped and
rectangular-shaped regions. Note that the treelike structure is
0.5 0.0 0.5 asymptotically the same as that in the coupled 1D niagk

c The U-shaped branching is repeated at one side of ékch
shaped region, including the=0 line segment. The branch-
ing side will be referred to as the zecoside. However, the
other side of eaclJ-shaped region grows like a chimney
without any further branching$as an example, see the
branch in Fig. 2b) starting from the right side of thé&-
shaped region of the ASP2As in the coupled 1D mag44],
this rule governs the asymptotic behavior of the treelike
structure.

A sequence of connected stability regions with increasing

1 period is called a “period-doubling route['14]. There are
6L (b ASP2 / two kinds of period-doubling routes. The sequence of the
L L L 7 U-shaped regions with the zecsides converges to the zero-
3 4 5 coupling pointc=0 on theA=A7 line. It will be referred to
¢ as theU route. On the other hand, a sequence of rectangular

FIG. 2. Stability diagram of synchronous asymmetric Fegions in each chimney converges to a critical line segment
2"-periodic (1=1, 2, 3, and Horbits of leveln born via synchro-  on theA=A line. For example, the sequence of the rectan-
nous supercritical PDB’s. PN denotes the stable region of an asyngular regions in Fig. @) converges to a critical line segment
metric orbit of periodN (N=2, 4, 8, and 1§ The solid and dashed joining the left end point, (=3.427 742 .. .) and the right
boundary lines represent the same as those in Fig. 1. The stabiliggnd pointc, (=4.79627 ...) on theAZA’{ line. This kind
diagram starting from the leftight) side of the ASP2 is shown in  of route will be called & route. Note that there are infinitely
(@ [(b)]. Note its treelike structure. many C routes, while theU route converging to the zero-

) ) ) ) coupling critical point AY,0) is unique. Hence, an infinite
boundary line, and gives rise to the birth of a new synchronymper of critical line segments, together with the zero-
nous orbit of period 2. This new synchronous 2-periodiccoupling critical point, constitute the critical set.
orbit also is a symmetric one with respect to the inversion \e now study the critical behaviors on the critical set.
symmetryS, as shown in Fig. (b) and its stable region is First, consider the case of thé route ending at the zero-
denoted by the SP2 in Fig(a. This synchronous symmetric coupling critical point. We follow the synchronous orbits of
orbit of pel’iOd 2 loses its Stablllty through asynchronOUSperiodqzzn up to leveln=8 in theU route, and obtain a
PFB’s when CrOS.Sing the nonhorizonté}l dashed boundarge”’_sim”ar sequence of parametemn(cn), at which each
curves. However, it becomes unstable via a synchronous Serpit of level n has some given synchronous and asynchro-
percritical PFB when the horizontal dashed boundary line i,oys residueR, andR; (=R,=---=Ry_;) (e.0.,Ry=1
crossed, and consequently a pair of new stable synchronoyg,q R,;=0). Then the sequendgA,,c,)} converges geo-
orbits with the same period 2 appears. Note that the new paihetrically to the zero-coupling critical poiné¢ ,0). As in
of synchronous orbits is a conjugate pair of asymmteric ory,o uncoupled inverted pendulufil], the sequencéA,}
bits with respect to the inversion symmet8; which is obeys a scaling law
shown in Fig. 1c). That is, the inversion symmetry is broken
due to the symmetry-breaking PFB. The stable region of the AA,~8" forlargen, (33
asymmetirc orbits of period 2 is denoted by the ASP2 in Fig.

1(a). Each synchronous asymmetric 2-periodic orbit becomeg/hereAA,=A,—A,,_; and 5=4.67. The value of the scal-
unstable via a synchronous supercritical PDB when the horiing factor 6 agrees well with the Feigenbaum constant
zontal solid boundary line is crossed, and gives rise to thg=4.6@ ...) of the 1D map[12]. We also note that the
birth of a new synchronous asymmetric 4-periodic orbit.sequencdc,} obeys a scaling law

Here we are interested in such synchronous supercritical

PDB'’s. Ac,~u~" forlargen, (39

Figure 2 shows the stability diagram of synchronous
asymmetric orbits born by synchronous supercritical PDB’swhere Ac,=c,—c,,_;. The sequence of the scaling factor
Each synchronous asymmetric orbit of leve{period 2", n {mn} (=Ac,/Ac,.,) of levelnis listed in the second col-
=1,2,3,...) loses its stability at the horizontal solid bound- umn of Table I, and converges to a constani{=—2.5),

12 |

~10 |-
P8

-In(A-A
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TABLE I. For the case of th& route, the scaling factoys,, and We next consider the cases 6froutes, each of which
vy in the scaling for the coupling parameter and the slope of theconverges to a critical line segment. Two kinds of additional
asynchronous residue at the zero-coupling critical point are showgritical behaviors are found at each critical line segment; one

in the second and third columns, respectively. critical behavior exists at both ends, and the other critical
behavior exists at interior points. In ea€hroute, there are
n Hn n two kinds of self-similar sequences of parametéeks,€,),
4 3517 —2.958 at which each synchronous orbit of lewehas some given
5 —2.904 2627 synchronous and asynchronous residdgandR,; the one
6 _2530 —2480 converges to the left end point of the critical line segment
7 5405 5597 and the other converges to the right end point. As an ex-

ample, consider th€ route in Fig. Zb), which converges to
the critical line segment with two endéf ,c,) and (AT ,c,).
which agrees well with the coupling-parameter scaling factoVWe follow, in the C route, two self-similar sequences of

@ (=—2.5®@...) of the coupled 1D maps near the zero- parameters, one converging to the left end and the other con-
coupling critical point[14]. It was also shown in Ref14]  verging to the right end. In both cases, the sequecg

that the scaling factaw is just the largest relevant “coupling converges geometrically to its accumulation vahig with
eigenvalue” (CE) of the zero-coupling fixed map of the the 1D scaling factob (=4.67) like the case of the route.
renormalization transformation for the case of the coupledrhe sequencel,} for both cases also obey the scaling law
1D maps.

We also study the coupling effect on the asynchronous Ac,~u™ " forlargen, (36)
residueR;,, of the synchronous orbit of period"hear the )
zero-coupling critical point &% ,0). Figure 3 shows three WhereAc,=c,—¢,_,. The sequence of the scaling factor
plots of Ry (A% ,c) versusc for n=5, 6 and 7. For=0,  Mn (=Acn./A9n+.l) of leveln is listed in Table Il, and con-
Ry, converges to a constaRt (=1.300 . . .), called the verges to its limit vglue,u (=2). We alsp note that the valug
critical asynchronous residue, as-oo. However, wher is of u agrees well with that of the coupling-parameter scaling
nonzero Ry, diverges asn—, ie. its slope S, factor (v=2) of the coupled 1D maps near both ends of each

_ ) ; o ; . critical line segmenf14]. It was also shown in Ref14] that
(= aRll“mChA’{*O)) at the zero-coupling critical point di the scaling factow (=2) is just the only relevant CE of a

verges asi—x. _ nonzero-coupling fixed map of the renormalization transfor-
As in the scaling for the coupling parameterthe se-  mation for the case of the coupled 1D maps.
quence(S,} also obeys a scaling law Figure 4a) shows the behavior of the asynchronous resi-

due Ry (A7 ,c) of the synchronous orbit of period"2Zn
=5, 6 and 7 near the critical line segment in Fig(i.
Magnified views near both ends andc, are also given in
Figs. 4b) and 4c), respectively. Foc=c, andc,, Ry, con-
—2.5) asn—. Note also that the value of agrees well Verges to a critical asynchronous residgg (=0) asn

with that of the largest relevant CE of the zero-coupling —* which is different from that for the zero-coupling case.
fixed map. The sequence of the slof; of R, , at both ends obeys well

the scaling law

S,~v" forlargen. (35

The scaling factow, (=S,,1/S,) of levelnis listed in the
third column of Table I, and converges to a constar(t=

18 ' ' ' ' ' S,~v" forlargen. (37)

1.6 The two sequences of the scaling factogs(=S,,, 1/S,) of
level n at both ends are listed in Table Ill, and converge to
their limit valuesy=2, which agrees well with the only CE

1.4 (v=2) of the nonzero-coupling fixed map governing the

. 0;_ TABLE Il. We followed, in theC route in Fig. Zb), two self-
< 10 similar sequences of parameters,(c,), at which the pair of resi-
= dues Rqp,Ry,) of the synchronous orbit with period'2s (1,0.1).
o They converge to both ends of the critical line segment. The scaling

1.0 factors of the coupling parameter at the left and right ends are
shown in the second and third columns, respectively. In both cases
the scaling factors seem to converge to the same limit vaks@.

0.8

| , | , | n Mn Mn
-0.0002 0.0000 0.0002 4 3.66 3.93
c 5 2.81 3.04
6 2.02 2.15
FIG. 3. Plots of the asynchronous residRg,(A7 ,c) vs c near 7 1.93 1.99

the zero-coupling critical point fon=5, 6, and 7.
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FIG. 5. Plot of the maximum asynchronous Lyapunov exponent
o1, of the synchronous quasiperiodic orbit near the critical line in
Fig. 2(b). This plot consists of 45& values, each of which is
obtained by iterating the Poincaneap P 20 000 times to eliminate
transients and then averaging over another 5000 iterations. The val-
ues of oy, at both ends of the critical line are zero, which are
denoted by solid circles.

R, .(A,.0)

FIG. 4. (a) Plots of the asynchronous residRe,(A7 ,c) vsc
near the critical line in Fig. @) for n=5, 6, and 7. Their magnified
views near the both ends andc, are also given inb) and (c),

was found to be governed by another nonzero-coupling fixed
map with no relevant CE for the case of the coupled 1D

respectively. maps[14]. . S .
There exists a synchronous quasiperiodic orbit onAhe
=A7 line. As mentioned in Sec. lll, its synchronous

critical behavior at both ends for the case of the COUpled 1q_yapunov exponents are the same as the Lyapunov expo-
maps. However, for any fixed value ofinside the critical nents of the uncoupled inverted pendulum, gy ,=0 and

line segmentR; , converges to a critical asynchronous resi—(;oz: —27BQ. The coupling affects only the pair of asyn-
due R} (=0.5) asn—x [see Fig. 4a)]. This case ofR} chronous Lyapunov exponents{;,01,) [=(021,022)=
=0.5 corresponds to the superstable casejcf0 (A} : the -o-=(oN-11,0N-12]. The maximum asynchronous
critical asynchronous Floquet multipljefor the coupled 1D  Lyapunov exponentr; ; near the critical line segment in Fig.
maps[14], because Eq(22) of R for the case of 2D maps 2(b) is shown in Fig. 5. Inside the critical line segmet (
reduces to the equation &=0.5x(1—\) for the case of <c<¢), the synchronous quasiperiodic orbit on the synchro-
1D maps. We also note that as in the case of the coupled 10¥zation plane becomes a synchronous attractor with
maps, there exists no Sca"ng factor of the Coup"ng param.<0. Since the dynamiCS on the SynChronOUS attractor |S the
eter inside the critical line segemnt, and hence the couplin§@Me as that of the uncoupled inverted pendulum, the critical
parameter becomes an irrelevant one at interior critica]’@PS at interior points exhibit essentially 1D-like critical be-
points. Thus the critical behavior inside the critical line seg-"2viors, because the critical behavior of the uncoupled in-
ment becomes the same as that of the uncoupled invertel rted pendulum is thg same as that of the 1D nfagg
pendulum(i.e., that of the 1D mapwhich will be discussed OWeVer, as the coupling parametepasses througty and

in more details below. This kind of 1D-like critical behavior ©r the maximum asyn(_:hro_nogs Lya_pu_nov exponeqt of
the synchronous quasiperiodic orbit increases from zero.

. . . Consequently, the synchronous quasiperiodic orbit ceases to
TABLE lll. The scaling factorsv,'s in the scaling for the slope  pe an attractor outside the critical line segment, and the sys-
of the asynchronous residue at the left and right ends of the criticlem of the coupled inverted pendulums is asymptotically at-

line segment in Fig. @) are shown in the second and third col- yacted to another synchronous rotational attractor of per-
umns, respectively. iod 1.

What happens beyond the first period-doubling transition

n “n vn point A7 is also interesting. As in the uncoupled 1D inverted

4 2.528 2.525 pendulum[11], with increasing the amplitut& further from

5 2.071 2.072 A=A7, the unstable inverted state undergoes a cascade of
6 2.001 2.001 resurrections, i.e., it will restabilize after it loses its stability,

7 2.000 2.000 destabilize again, and so for#td infinitum For each case of

the resurrections, an infinite sequence of PDB’s leading to
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chaos follows. Consequently, the coupled inverted pendu- T " T " T
lums exhibit multiple period-doubling transitions to chaos.

As the first example, we consider the second period-
doubling transition to chaos. Figurdab shows the second
stability diagram of the synchronous inverted stationary
point and asymmetric orbits of level(period 2', n=0,1,2,
and 3 in the A-c plane. When crossing the horizontal solid
boundary line of its stability region IS, the unstable inverted
state restabilizes with birth of a new unstable synchronous
symmetric orbit of period 2 via a synchronous subcritical
PDB. This is the second resurrection of the inverted state.
However, when the horizontal dashed boundary line is
crossed, the stabilized inverted state becomes unstable via a
synchronous supercritical PFB, which results in the birth of a
conjugate pair of synchronous asymmetric orbits with period
1. Then each synchronous asymmetric orbit of lavede-
comes unstable at the horizontal solid boundary line of its
stability region via a synchronous supercritical PDB, and .
gives rise to the birth of a synchronous asymmetric period- e
doubled orbit of leveh+ 1. Such an infinite sequence termi- %
nates at a finite value o3 (=3.8297& .. .), which is the n
second period-doubling transition point of the uncoupled in-
verted pendulunill]. Note that the treelike structure of the
stability diagram in Fig. @) is essentially the same as that in
Fig. 2(@). Hence, the critical set also consists of the zero-
coupling critical point and an infinite number of critical line
segments, as in the first period-doubling transition case. In
order to study the critical behaviors on the critical set, we FIG. 6. (8) Second andb) third stability diagrams of synchro-
follow the synchronous asymmetric orbits up to lemgt7  nous periodic orbits. HereA; (=3.82978...) and A3
in the U route and in the rightmo<E route. It is found that (=10.675 090 are just the second and third period-doubling transi-
the critical behaviors are the same as those for the firdfon points of the uncoupled inverted pendulum, respectively. The
period-doubling transition case. That is, there exist thregt@Ple regions of the inverted stationary point, an asymmetric orbit
kinds of critical behaviors at the zero-coupling critical point, g;ﬁggigd(,\ll;g Sf‘;ﬁgtgzrﬁ'ifgfzzngzzg’b?nfsazsa:zmsnll?*gn d
bofse'tr;lissgi:sr?gr;)fgrt:;;“UveeSaelg(;nce(:‘rgsailggrItnfirtlﬁirrg?)lgri).dsl\l' respectively. The solid and dashed boundary lines also repre-
doubling transition to chaos. The third stability diagram of ent the same as those in Fig. 1.
the synchronous orbits with=1, 2, 4, and 8 is shown in

-In(A,-A)

-0.03 0.00 0.03 0.06
C

N
Fig. 6b). A synchronous subcritical PFB occurs when cross- _ i n_ N 9
ing the horizontal dashed boundary line of the IS. Conse- 90X, - X =C g 2 Xm—X1|, N=2and 3.
quently, the unstable inverted state restabilizes with birth of (38

a pair of unstable orbits with period 1. This is the third

resurrecuon of the inverted state.. However, the stablhzet_;}:_irst stability diagrams of the synchronous orbits for the
inverted state becomes unstable via a synchronous supercrifiases of the quadratic and cubic couplings are shown in Figs.
cal PDB when the horizontal solid boundary line of the IS IS7(a) and 1b), respectively. Their treelike structures are es-
crossed, and gives rise to the birth of a symmetric 2-periodigentially the same as that in Fig(a2 Hence, the zero-
orbit. The subsequent bifurcation behaviors are the same &gupling critical point and an infinite number of critical line
those for the first period-doubling transition to chaos. That issegments constitute the critical set for each nonlinear-
a third infinite sequence of synchronous supercritical PDB’soupling case. Moreover, the critical behaviors for these
follows and ends at a finite valua(=10.67509...), nonlinear-coupling cases are also found to be the same as
which is the third period-doubling transition point of the un- those for the linear-coupling case.
coupled inverted pendulufi1]. Note also that the treelike
structure of the third stability diagram is essentially the same
as that in Fig. 2a). Hence the critical set is composed of the
zero-coupling critical point and an infinity of critical line Here we study the nonglobal-coupling cases with the cou-
segments. Furthermore, the critical behaviors on the criticgbling range K<(N/2)[(N—1)/2] for even (odd N. The
set are found to be the same as those for the first periodstructure of the critical set becomes different from that for
doubling transition case. the global-coupling case, because of a significant change in
In addition to the linear-coupling ca$82), we have also the stability diagram of the synchronous orbits with period
studied two other nonlinear-coupling cases: 2" (n=0,1,2...), aswill be seen below.

B. Nonglobal coupling
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-In(A-A)

FIG. 8. Stability diagram of synchronous periodic orbits in four
linearly coupled inverted pendulums with nearest-neighbor cou-
pling (K=1). Each stable region is bounded by its solid boundary
curves. For a synchronous orbit of perigdthe PDB(PFB) curve
of the mode with indey is denoted by a symbaj{™"P .

) o o _ nous asymmetric orbit of level 1nE1). For the case of
FIG. 7. First stability diagrams of synchronous periodic orbits |a\e| 2 (=2), the zeroc side of U,(1,2), including ac
near thec=0 line for the cases ofa) the quadrafic andb) cubic  _ g |ine segment, remains unchanged, whereas the other side
couplings. Here SP2 and PNE2, 4, and 8 denote the stable po.mes flattened by the bifurcation curve of the asynchro-
regions of a symmetric orbit of period 2 and an asymmetric orbltnous mode withj =1 [21]. Due to the successive flattening
with periodN, respectively. with increasing leveh, a significant change in the stability
| id i | | diagram occurs. Of the infinite number of period-doubling
As an example, we consider a |inearly coup ed, nearesty, tes for the global-coupling case, only tHeroute ending
neighbor coupling case witk=1, in which the coupling ¢ the zero-coupling critical point remains. Thus only the

function is zero-coupling point is left as a critical point in the parameter
c plane.
g(Xg, ... XN)= §(X2+XN—2X1) forN>3. (39 Consider a self-similar sequence of parametés,¢,),

at which the synchronous orbit of period Bas some given

residues, in théJ route for the global-coupling case. Rescal-
As shown in Sec. lll, the stable regidhy, in which a syn- ing the coupling parameter with the minimum scaling factor
chronous orbit is stable against the perturbations of botl/S,(1,2) (=0.75), the sequence is transformed into a self-
modes with indices 0 anp(#0), varies depending on the similar one for theN=4 case of nearest-neighbor coupling.
mode numberj, because the asynchronous residRie(] Hence, the critical behavior near the zero-coupling critical
#0) depends on. To find the stability region of the syn- point becomes the same as that for the global-coupling case.
chronous orbit, one can start with the stability regidg for The results for the nearest-neighbor coupling case with
the global-coupling case. Rescaling the coupling paranteter K=1 extends to all the other nonglobal-coupling cases with
by a scaling factor By(1,j) [Sy(K,]j) is given in Eq.(30)], 1<K<N/2[(N—1)/2] for even (odd N. For each
the stable regiorlJs is transformed into a stable region nonglobal-coupling case witk>1, we first consider a mode
Un(1,)). Then the stability region of the synchronous orbit iswith index j i, for which the scaling factor §((K,j) be-
given by the intersection of all such stable regidhg's. comes the smallest one and the stability redibg(K,]j min)

As an example, we consider the case Witk 4. Figure 8 including ac=0 line segment. Here the value ff;, varies
shows the stability regions of the synchronous asymmetriclepending on the rang€. Like the K=1 case, the zero
2"-periodic (=1, 2, 3, and #orbits. Note that the scaling side ofUy(K,jmin) including thec=0 line segemnt remains
factor 15,(1,j) has its minimum valug at j=2. However, unchanged, whereas the other side becomes flattened by the
for each synchronous orbit)4(1,2) itself cannot be the sta- bifurcation curves of the other modes with nonzero indices.
bility region, because bifurcation curves of different modesThus the overall shape of the stability diagram of the
with nonzero indices intersect one another. We now examin@"-periodic (1=1,2,3 .. .) orbits born via synchronous su-
the structure of the stability diagram in Fig. 8, starting frompercritical PDB’s becomes essentially the same as that for
the left side of the stability region of the synchro- the nearest-neighbor coupling case. Consequently, only the
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U route ending at the zero-coupling critical point is left as aany other nonglobal-coupling cases the structure of the criti-

period-doubling route, and the critical behavior near thecal set becomes different from that for the global-coupling

zero-coupling critical point is also the same as that for thecase, because of a significant change in the stability diagram

global-coupling case. of 2"-periodic orbits 6=0,1,2 . . .). Thecritical scaling be-

haviors on the critical set have been also found to be the
V. SUMMARY same as those for the abstract system of the coupled 1D maps
The critical behaviors of period doublings in the system 14}

of N symmetrically coupled inverted pendulums have been
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